Restarting iterative projection methods for Hermitian nonlinear eigenvalue problems with minmax property
نویسندگان
چکیده
In this work we present a new restart technique for iterative projection methods for nonlinear eigenvalue problems admitting minmax characterization of their eigenvalues. Our technique makes use of the minmax induced local enumeration of the eigenvalues in the inner iteration. In contrast to global numbering which requires including all the previously computed eigenvectors in the search subspace, the proposed local numbering only requires a presence of one eigenvector in the search subspace. This effectively eliminates the search subspace growth and therewith the super-linear increase of the computational costs if a large number of eigenvalues or eigenvalues in the interior of the spectrum are to be computed. The new restart technique is integrated into nonlinear iterative projection methods like the Nonlinear Arnoldi and Jacobi-Davidson methods. The efficiency of our new restart framework is demonstrated on a range of nonlinear eigenvalue problems: quadratic, rational and exponential including an industrial real-life conservative gyroscopic eigenvalue problem modeling free vibrations of a rolling tire. We also present an extension of the method to problems without minmax property but with eigenvalues which have a dominant either real or imaginary part and test it on two quadratic eigenvalue problems.
منابع مشابه
Electron energy level calculation for a three dimensional quantum dot
Abstract: In this paper we consider the rational eigenvalue problem governing the relevant energy levels and wave functions of a three dimensional quantum dot. We present iterative projection methods of Arnoldi and of Jacobi–Davidson type for computing a few eigenpairs of this system. Solving the projected nonlinear eigenvalue problems we take advantage of a minmax characterization of the eigen...
متن کاملNearly optimal preconditioned methods for hermitian eigenproblems under limited memory . Part I : Seeking one eigenvalue Andreas Stathopoulos July 2005
Large, sparse, Hermitian eigenvalue problems are still some of the most computationally challenging tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem from the nonlinear perspective that helps us develop two nearly optim...
متن کاملFiltering En Restarting Orthogonal Projection Methods Filtering En Restarting Orthogonal Projection Methods
We consider the class of the Orthogonal Projection Methods (OPM) to solve iteratively large and generalised eigenvalue problems. An OPM is a method that projects a large eigenvalue problem on a smaller subspace. In this subspace, an approximation of the eigenvalue spectrum can be computed from a small eigenvalue problem using a direct method. We show that many iterative eigenvalue solvers, such...
متن کاملNearly Optimal Preconditioned Methods for Hermitian Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue
Large, sparse, Hermitian eigenvalue problems are still some of the most computationally challenging tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem from the nonlinear perspective that helps us develop two nearly optim...
متن کاملProjection Methods for Nonlinear Sparse Eigenvalue Problems
This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 135 شماره
صفحات -
تاریخ انتشار 2017